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Abstract

We present a field-space-based level set method for computing multi-valued solutions to one-dimensional Euler–Pois-
son equations. The system of these equations has many applications, and in particular arises in semiclassical approxima-
tions of the Schrödinger–Poisson equation. The proposed approach involves an implicit Eulerian formulation in an
augmented space – called field space, which incorporates both velocity and electric fields into the configuration. Both veloc-
ity and electric fields are captured through common zeros of two level set functions, which are governed by a field transport
equation. Simultaneously we obtain a weighted density f by solving again the field transport equation but with initial den-
sity as starting data. The averaged density is then resolved by the integration of the obtained f against the Dirac delta-func-
tion of two level set functions in the field space. Moreover, we prove that such obtained averaged density is simply a linear
superposition of all multi-valued densities; and the averaged field quantities are weighted superposition of corresponding
multi-valued ones. Computational results are presented and compared with some exact solutions which demonstrate the
effectiveness of the proposed method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to introduce a new field-space-based level set method for computing multi-valued
solutions to the Euler–Poisson system
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otqþ oxðquÞ ¼ 0; x 2 R; t > 0; ð1:1Þ
otuþ uoxu ¼ KE; ð1:2Þ
oxE ¼ q� cðxÞ: ð1:3Þ
These are equations of conservation of mass, Newton’s second law, and the Poisson equation, respectively.
Here K is a physical constant, which indicates the property of forcing, i.e., repulsive when K > 0 and attractive
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when K < 0. And q ¼ qðt; xÞ is the local density, u ¼ uðt; xÞ is the mean velocity field, E ¼ Eðt; xÞ is the electric
field, and cðxÞ is the background charge profile.

The Euler–Poisson system arises in many physical problems such as fluid dynamics, plasma dynamics,
gaseous stars, quantum gravity and semiconductors, etc. As is known, the simple one-dimensional
unforced inviscid Burgers’ solution always forms a shock discontinuity, except for the nongeneric case
of increasing initial profile, u00 P 0. In contrast, it was shown in [11] that the corresponding Euler–Poisson
system has global smooth solutions as long as its initial configuration is above a critical threshold, allow-
ing a finite, negative velocity gradient. It was also shown for a sub-critical set of initial data, solutions of
the Euler–Poisson system will develop singularity at a finite time. For Euler–Poisson equations, beyond
singularity generalized solutions need to be chosen and interpreted to reflect the physical relevance. In
some applications such as in fluid dynamics, a shock will develop after the singularity formation. But
in other applications such as the semiclassical approximation of the Schrödinger–Poisson equation and
the wave breaking in Klystrons [39], one must allow multi-valued solutions in order to capture physically
relevant phenomena. The usual shock-capturing methods for computing entropy solutions do not give
desired results.

The main goal in this work is to develop a novel level set method for computing multi-valued solutions to
1D Euler–Poisson equations. Previously in [38] we have identified a configuration space to unfold the multi-
valuedness in both velocity and electric fields. This extended configuration space from the usual phase space is
hence termed as the field space. In this work we further derive a procedure to evaluate multi-valued density
and field quantities.

Our approach can be summarized as follows: we use a vector level set function U ¼ ð/1;/2Þ
> 2 R2 in

field space ðx; p; qÞ 2 R3 with p ¼ uðt; xÞ and q ¼ Eðt; xÞ to describe dynamics of the 1D Euler–Poisson sys-
tem (1.1)–(1.3). The vector level set function U ¼ Uðt; x; p; qÞ is shown to satisfy the field transport
equation
otUþ poxUþ KqopU� cðxÞpoqU ¼ 0:
The zero level set of this vector function, initiated as
U0ðx; p; qÞ :¼ ðp � u0ðxÞ; q� E0ðxÞÞ>;
forms a one-dimensional manifold in field space ðx; p; qÞ 2 R3: the interaction of two 2D manifolds
f/1 ¼ 0g \ f/2 ¼ 0g. This gives implicitly multi-valued velocity and electric fields through
ðu;EÞ 2 fðp; qÞjUðt; x; p; qÞ ¼ 0g:

Note that U as a solution of the field transport equation is bounded in any domain where the initial velocity
and electric fields are bounded.

We evaluate the density function by simultaneously solving the field transport equation for a new quantity f

near fðx; p; qÞ; U ¼ 0g but with initial density as starting data, i.e.,
otf þ poxf þ Kqopf � cðxÞpoqf ¼ 0;

f ð0; x; p; qÞ ¼ q0ðxÞ:
The averaged density is thus resolved by the integration of f against the Dirac delta-function of two level set
functions in field space,
�qðt; xÞ ¼
Z

R2
p;q

f ðt; x; p; qÞdð/1Þdð/2Þdp dq:
We prove that such obtained averaged density is simply a linear superposition of all multi-valued densities,
i.e.,
�qðt; xÞ ¼
XN

i¼1

qiðt; xÞ: ð1:4Þ
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Moreover, the averaged velocity and electric fields can be further evaluated by
�u ¼
R

R2 pf dð/1Þdð/2Þdp dq
�q

; ð1:5Þ

E ¼
R

R2 qf dð/1Þdð/2Þdp dq
�q

: ð1:6Þ
Regarding these two averaged quantities we have
�u ¼
PN

i¼1uiðt; xÞqiðt; xÞ
�q

; ð1:7Þ

E ¼
PN

i¼1Eiðt; xÞqiðt; xÞ
�q

; ð1:8Þ
where ðui;EiÞ are multi-valued fields determined from our level set method.
We note that the Euler–Poisson system can be regarded as a semiclassical approximation of the nonlinear

Schrödinger–Poisson equation
i�otw
� ¼ � �

2

2
o2

xw
� þ KV �w�; x 2 R; t P 0; ð1:9Þ

o2
xV � ¼ cðxÞ � jw�j2; ð1:10Þ
where w�ð�; tÞ is a complex-valued wave function depending on the scaled Planck constant �, with K being a
scaled physical constant. This equation has been studied in different contexts, and in particular, as the funda-
mental equation in semiconductor applications, with c > 0 standing for the doping profile and K � k�2, k
being the Debye number, consult [18] and references therein.

The electric field is determined by E ¼ �V x. Seeking the WKB-type solution of the form
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qðt; xÞ

p
expðiSðt; xÞ=�Þ;
we recover, to the leading order when �� 1, the Euler–Poisson system (1.1)–(1.3) for ðq; u ¼ SxÞ. We should
mention that for one-dimensional case the passage from the Schrödinger–Poisson equation to the Euler–Pois-
son equation was proved in [37] for a set of sub-critical initial data, and the passage from the Schrödinger–
Poisson equation to the Vlasov–Poisson equation was proved in [56] for more general initial data, see also
[35,40] for earlier works.

For the Euler–Poisson system (1.1)–(1.3) itself, the authors in [11] showed that for K > 0 and cðxÞ ¼ 0, the
EP system (1.1)–(1.3) admits a global smooth solution if and only if
u00ðaÞ > �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kq0ðaÞ

p
; 8a 2 R:
Moreover,
qðxða; tÞÞ ¼ q0ðaÞ
Cða; tÞ ; Cða; tÞ :¼ 1þ u00ðaÞðtÞ þ

K
2

q0ðaÞt2: ð1:11Þ
If the initial slope of u0 is too negative, then the solution will breakdown at a finite time tc,
tc ¼ minaft;Cða; tÞ ¼ 0g;
beyond which multi-valued solutions should be sought. For the case of K > 0 and cðxÞ ¼ const > 0, the crit-
ical regularity condition becomes
ju00ðaÞj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð2q0ðaÞ � cÞ

p
; 8a 2 R:
Interestingly, if electric force becomes repulsive K < 0, the critical regularity condition reads
u00ðaÞP 1� q0ðaÞ
c

� � ffiffiffiffiffiffiffiffiffiffi
�cK
p

; 8a 2 R:
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We note that parameterized solutions along particle trajectory remains valid if multi-valued solutions are con-
sidered. The solution formulas and the blowup time estimates obtained in [11] provide us a valuable guide
when we check the accuracy and validity of our methods using various testing examples.

We also note that previously in [39] the authors evaluated averaged density of an Euler–Poisson system in
Klystrons with a quite different approach, using Vlasov–Poisson equations in phase space to interpret the
multi-valued solutions. We comment on this in Section 4. We refer to [22,23] for multi-phase semiclassical
approximation of an electron in a 1D crystalline lattice using the K-branch solution approach [1].

From a broader perspective, numerical capturing of multi-valued solutions is important in many applica-
tions. Examples are the computation of dispersive waves [16,31–33,55], optical waves [10,12,13,20,36,42,46],
seismic waves [17,49,53], semiclassical limits of Schrödinger equations [6,21,26,48], electron beam modulation
in vacuum electronic devices [25,39], etc. In these applications when the wave field is highly oscillatory, direct
numerical simulation of the wave dynamics can be prohibitively costly, and approximate models for wave
propagation must be used. The resulting approximate models are often nonlinear, and classical entropy-type
solutions, such as the viscosity solution introduced in [7], are not adequate in describing the wave behavior
beyond the singularity, where multi-valued solutions in physical space should be sought. Techniques that have
been suggested in literature include ODE-based Lagrangian methods, nonlinear Hamilton–Jacobi equation-
based Eulerian methods.

A recent approach for improving physical-space-based Eulerian methods is the use of a kinetic formulation
in phase space, consult [1,12] for its early use in the context of multi-phase computation for optical waves. There
is, however, a serious drawback with direct numerical approximations of the kinetic equation which is the need
for a large set of independent variables in the phase space. To remedy this problem, two ways are suggested in
the literature. One is the moment method, which is based on reducing the number of independent variables by
introducing equations for moments, see e.g. [1,12,21,26,46]. The other is based on computations of special wave
front solutions. For tracking wave fronts in geometric optics, geometry based methods in phase space such as
the segment projection method [14] and the level set method [9,42] have been recently introduced. Consult the
seminal survey article [13] for recent development of computational high frequency wave propagation.

More recently, with a geometric point view in place of the kinetic one in phase space, a new level set method
framework has been developed for computing multi-valued phases and other physical observables in the entire
physical domain in [6,29,30,27,28]. The effective equations which have been studied include general nonlinear
first-order equations [30] and weakly coupled WKB systems of the form
otS þ Hðx;rxSÞ ¼ 0; otqþrx � ðqrkHðx;rxSÞÞ ¼ 0;
with applications in the semiclassical approximation of Schrödinger equations H ¼ 1
2
jkj2 þ V ðxÞ

� �
[6,27], geo-

metrical optics limit of the wave equation (H ¼ cðxÞjkj) [28,43]. We note that for first-order quasi-linear hyper-
bolic equations, the level set formulation based on graph evolution was known much earlier, see e.g. [4]. We
also refer to [5,8,10,36,43] for various developments of the phase-space-based level set method applied to the
geometric optics. The use of level set formulation for computing discontinuous solutions to Hamilton–Jacobi
equations is proposed in [52]. We refer to the recent review article [34] for the level set method and multi-val-
ued solutions in computational high frequency wave propagation.

However, in the Euler–Poisson system (1.1)–(1.3) the second equation for velocity u couples with the Pois-
son equation (1.3), hence phase-space-based level set methods introduced previously do not apply. The main
novelty of our approach in this work is the use of field space in which the Lagrangian manifold is identified by
U ¼ 0 and the dynamics of the Euler–Poisson system can be recast into a closed characteristic system along the
particle trajectory in field space. Then the level set equation is just a transport equation with speed determined
by the vector field of the characteristic system. Multi-valued velocity and electric fields are thus resolved as
common zeros of two level set functions initiated as ðp � u0ðxÞÞ and ðq� E0ðxÞÞ, respectively. A post-process-
ing step described above enables us to evaluate the density and other physical observables.

The rest of this paper is organized as follows. In Section 2 we describe the field space method and level set
formulations introduced in [38], which are crucial ingredients for evaluating the density. Section 3 is devoted
to a derivation of the field transport equation for a new quantity f as well as the justification of the integration
procedure for computing the density. In Section 4 linear superposition principle for multi-valued q is proved;
Averaged field quantities are also shown to be a weighted superposition of corresponding multi-valued ones.
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In Section 5 we discuss generalizations and possible connections with kinetic equations as well as the Schrö-
dinger–Poisson equation. In Section 6 we present detailed numerical procedures for implementing the pro-
posed method. Finally in Section 7 we describe the numerical strategy explored in this paper and present
some numerical results to verify the capacity of our method.
2. Level set equation in field space

We recall the level set formulation derived in [38] for computing multi-valued velocity and electric fields for
1D Euler–Poisson equations (1.1)–(1.3), subject to the following initial conditions
qð0; xÞ ¼ q0ðxÞ; uð0; xÞ ¼ u0ðxÞ: ð2:1Þ

In this model, cðxÞP 0 denotes the fixed positively charged background, i.e. the doping profile in semiconduc-
tor modeling [41]. The initial electric field can be determined from the density, but in different way for cases,
c 6¼ 0 and c � 0, respectively.

As shown in [11], for Euler–Poisson equations, only a subset of initial configurations leads to global smooth
solutions. For sub-critical initial data the classical solution will fail at finite time when particle trajectory col-
lides. As pointed out in Section 1 beyond the singularity we are going to adopt and compute multi-valued
solutions.

In order to capture multi-valued fields, we advocate a new method based on level set formulations in an
augmented space. The augmented space we are taking is ðx; p; qÞ 2 R3 with p ¼ u and q ¼ E, called the field

space since it incorporates both velocity and electric fields. Instead of looking for explicit solutions in field
space, we are seeking implicit solutions identified as a common zero of two implicit functions, in which
multi-valued velocity and electric fields are implicitly represented.

We now sketch one derivation of the level set formulation by employing the given Euler–Poisson system. It
is known that the electric field E satisfies a forced transport equation, see [24,38],
Et þ uEx ¼ �cðxÞu: ð2:2Þ

Let Uðt; x; p; qÞ 2 R2 be a vector function and its Jacobian matrix det oUðt;x;p;qÞ

oðp;qÞ

� �
6¼ 0, the implicit function the-

orem suggests that Uðt; x; p; qÞ ¼ 0 may determine two functions p ¼ pðx; tÞ and q ¼ qðx; tÞ, at least locally
where the Jacobian matrix is nonsingular. Let p ¼ uðx; tÞ and q ¼ Eðx; tÞ be a solution of the Euler–Poisson
system, we thus obtain
Uðt; x; uðt; xÞ;Eðt; xÞÞ � 0; ðx; tÞ 2 R� Rþ: ð2:3Þ

Differentiation of (2.3) with respect to t and x respectively gives
Ut þ Uput þ UqEt ¼ 0;

Ux þ Upux þ UqEx ¼ 0:
Multiplying u to the second equation and adding to the first one results in the following:
Ut þ uUx þ ðut þ uuxÞUp þ ðEt þ uExÞUq ¼ 0:
Applying u ¼ p, ut þ uux ¼ KE, and Et þ Exu ¼ �cðxÞu to the above equation, we obtain
Ut þ pUx þ KqUp � cðxÞpUq ¼ 0: ð2:4Þ

Note that this transport equation can also be written as in conservative form
Ut þ ðpUÞx þ ðKqUÞp � ðcðxÞpUÞq ¼ 0;
since the divergence of the velocity field in ðx; p; qÞ space is null.
The initial conditions of (2.4) can be chosen as
/1ð0; x; p; qÞ ¼ p � u0ðxÞ; ð2:5Þ
/2ð0; x; p; qÞ ¼ q� E0ðxÞ: ð2:6Þ
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Note that the choice of initial condition is not unique. However the zero sets of selected level set functions
should uniquely embed the given initial data u0 and E0.

As argued in [11] based on the physical principle, E0ðxÞ needs to be determined from q0ðxÞ according to
whether the background charge is present. For c 6¼ 0, the electric field is given by
Eð0; xÞ ¼
Z x

�1
ðqðn; 0Þ � cðnÞÞdn; ð2:7Þ
and for c � 0:
Eð0; xÞ ¼ 1

2

Z x

�1
qðn; 0Þdn�

Z 1

x
qðn; 0Þdn

� �
: ð2:8Þ
3. Evaluation of density

Equipped with the obtained level set formulation for both velocity and electric fields in field space
ðx; p; qÞ 2 R3, we now introduce an approach for capturing the multi-valued density q. Note that the density
q formally solves the mass equation in the physical space ðt; xÞ 2 Rþ � R,
otqþ uoxq ¼ �qux:
When the velocity field is multi-valued, the density is forced to become multi-valued too. Note that along the
particle trajectory x ¼ xðt; aÞ, governed by d

dt x ¼ uðt; xÞ with xð0Þ ¼ a 2 R, we have
qðt; xðt; aÞÞ ¼ q0ðaÞ
Cðt; aÞ ;
where Cðt; aÞ ¼ oaxðt; aÞ indicates the deformation of particle trajectories. The density would become un-
bounded at the instant tc, Cðtc; aÞ ¼ 0, when the velocity field starts to become multi-valued. This difficulty
makes a direct computation of q unrealistic.

The strategy is to first derive an evolution equation for a density representative in field space ðx; p; qÞ, and
then project it onto the 1D Lagrangian manifold expressed implicitly by fðx; p; qÞjU ¼ 0g, involving both
velocity and electric fields.

Let ~qðt; x; p; qÞ be a representative of qðt; xÞ in field space, i.e.,
qðt; xÞ � ~qðt; x; uðt; xÞ;Eðt; xÞÞ:

We thus have
otqþ uoxq ¼ ot~qþ utop~qþ Etoq~qþ uðox~qþ uxop~qþ Exoq~qÞ ¼ ½ot þ uox þ ðut þ uuxÞop þ ðEt þ uExÞoq�~q:
Using Eqs. (1.2) and (2.2) we have
otqþ uoxq ¼ ot~qþ uox~qþ KEop~q� cðxÞuoq~q:
Hence the density equation in the field space follows:
L~q ¼ �~qoxu; ð3:1Þ

where the field transport operator is defined as
L :¼ ot þ pox þ Kqop � cðxÞpoq:
The above observation, also true for other quantities, is summarized in the following:

Lemma 3.1. Let ~wðt; x; p; qÞ be a representative of wðt; xÞ in field space such that
wðt; xÞ ¼ ~wðt; x; uðt; xÞ;Eðt; xÞÞ:

Then
otwþ uoxw ¼ L~wðt; x; p; qÞ:
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From (3.1), we still need to evaluate ux in field space in terms of the level set function U. To this end we
differentiate the level set equation, LU ¼ 0, with respect to p and q respectively and obtain
LðopUÞ þ ðox � cðxÞoqÞU ¼ 0;

LðoqUÞ þ KopU ¼ 0:
Set
J ¼ detðUpUqÞ ¼ Up � U?q ; U? :¼ ð/2;�/1Þ
>
;

we have
LðJÞ ¼ � detðUxUqÞ: ð3:2Þ

In fact
LðJÞ ¼ LðUpÞ � U?q þ opU � ðLðUqÞÞ? ¼ ðcoq � oxÞU � oqU
? � KopU � ðopUÞ? ¼ �oxU � oqU

?

¼ � detðUxUqÞ:
In order to express ux in (3.1) in terms of U, we further differentiate the relation
Uðt; x; uðt; xÞ;Eðt; xÞÞ ¼ 0
with respect to x to obtain
oxUþ uxopUþ ExoqU ¼ 0;
from which we obtain
ux ¼ �
detðUxUqÞ
detðUpUqÞ

:

This when inserted into (3.1) gives
Lð~qÞ ¼ ~q
detðUxUqÞ

J
: ð3:3Þ
Note that at the singular point, J is zero and (3.3) is not defined, where integral equation should be considered.
Following [27,28] for density evaluation from phase space, we evaluate the multi-valued density in physical
space by projecting its value from field space ðx; p; qÞ onto the manifold U ¼ 0, i.e., for any x we compute
�qðt; xÞ ¼
Z

Rp;q

~qðt; x; p; qÞjJ jdð/1Þdð/2Þdp dq:
Note that by the use of absolute value for J is required since the Jacobian changes sign if singularities are
formed.

A combination of (3.2) and (3.3) gives
Lð~qð	JÞÞ ¼ 0;
away from singularities. Then we have, away from the singular points,
Lðf Þ ¼ 0; f :¼ ~qjJ j;
where the absolute sign is used to ensure the same nonnegative sign of f before and after the blowup time when
J ¼ 0. Thus we just need to compute the quantity f by solving the field transport equation
otf þ poxf þ Kqopf � cðxÞpoqf ¼ 0; ð3:4Þ
subject to initial data
f ð0; x; p; qÞ ¼ q0ðxÞJð0; x; p; qÞ ¼ q0ðxÞ: ð3:5Þ
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Note that by choice of (2.5) and (2.6), Jð0; x; p; qÞ � 1. With this quantity f the singularities in density q is can-
celed out by JðUÞ. Thus, we are able to locally evaluate the density in physical space by projection of f onto the
manifold fðp; qÞ : Uðx; p; qÞ ¼ 0g
�qðt; xÞ ¼
Z

R2

f ðt; x; p; qÞdð/1Þdð/2Þdp dq: ð3:6Þ
Note that in field space the effective manifold for single valued fields is given by fðx; p; qÞjp ¼ uðt; xÞ;
q ¼ Eðt; xÞg. For multi-valued velocity and electric fields, we have
ðu;EÞ 2 fðp; qÞ : /1ðt; x; p; qÞ ¼ 0;/2ðt; x; p; qÞ ¼ 0g:

We can evaluate their averages by
�uðt; xÞ ¼
Z

R2

pf ðt; x; p; qÞdðUÞdp dq=�q; ð3:7Þ

Eðt; xÞ ¼
Z

R2

qf ðt; x; p; qÞdðUÞdp dq=�q: ð3:8Þ
4. Superposition of multi-valued quantities

This section is devoted to the issue of how to relate the computed averaged physical observables such as �q, �u
and E to exact multi-valued quantities predicted by the characteristic method. We start with the observed
mean density computed from the formula (3.6). We shall show that if multi-valued densities are given, the
above calculated mean density is simply a superposition of all multi-valued densities. This result is summarized
below.

Theorem 4.1 (Superposition principle for the density). Let fqigN
i¼1 be multi-valued densities corresponding to

multi-valued fields ðui;EiÞ determined by
ðui;EiÞ 2 fðp; qÞ : /lðt; x; p; qÞ ¼ 0; l ¼ 1; 2g:

Then
�qðt; xÞ ¼
XN

i¼1

qiðt; xÞ: ð4:1Þ
Proof. In order to evaluate the integral (3.6), we assume that all ðui;EiÞ lie in a bounded domain and use a
partition of unity so that we just need to evaluate
Z Z
f rdð/1Þdð/2Þdp dq;
where r 2 C10 vanishes near ðpi; qiÞ, with rðpi; qiÞ ¼ 1. Recall that for any smooth function gðpÞ with only one
zero p ¼ p
 we have
dðgðpÞÞ ¼ dðp � p
Þ
jg0ðp
Þj :
In the neighborhood of ðpi; qiÞ, the implicit function theorem suggests that the zero level set /1 ¼ 0 can be
explicitly expressed by p ¼ hðqÞ for each q near qi, with pi ¼ hðqiÞ. Thus
Z Z

f rðp;qÞdð/1Þdð/2Þdpdq¼
Z Z

f r
dðp� hðqÞÞ
jop/1jp¼hðqÞ

dð/2Þdpdq¼
Z

f ðt;x;hðqÞ;qÞrðhðqÞ;qÞdð/2ðt;x;hðqÞ;qÞÞ
jop/1jp¼hðqÞj

dq

¼
Z

f ðt;x;hðqÞ;qÞrðhðqÞ;qÞdðq� qiÞ
jop/1jp¼hðqÞk d

dq/2jqi

dq¼ f ðt;x;pi;qiÞ
jop/1kop/2h0ðqÞþ oq/2jðpi ;qiÞ

: ð4:2Þ
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Furthermore, for any q near qi we have
/1ðhðqÞ; qÞ � 0;
which leads to
op/1h0ðqÞ þ oq/1 ¼ 0:
This when inserted into the denominator in (4.2) gives the Jacobian of ð/1;/2Þ:

jop/1oq/2 � oq/1op/2j ¼ jJ j:
Note that f ðt; x; ui;EiÞ ¼ qiðt; xÞjJ j, we thus have
Z Z
f rðp; qÞdð/1Þdð/2Þdp dq ¼ qiðt; xÞ:
This when combined with the partition of unity gives the asserted (4.1). h

This theorem shows that the linear superposition principle holds for the density of the nonlinear Euler–
Poisson system in the sense that direct summation of all multi-valued densities gives the physical observed den-
sity. To our knowledge, this is the first rigorous proof via the field space configuration. It would be interesting
to see whether this could be justified using the usual Wigner transform in the phase space.

Similar results hold for velocity and electric fields and are stated in the following.

Theorem 4.2 (Weighted superposition for field quantities). Let fqigN
i¼1 be multi-valued densities corresponding

to multi-valued fields ðui;EiÞ determined by
ðui;EiÞ 2 fðp; qÞ : /lðt; x; p; qÞ ¼ 0; l ¼ 1; 2g:

Then
�uðt; xÞ ¼
PN

i¼1uiðt; xÞqiðt; xÞ
�q

; ð4:3Þ

Eðt; xÞ ¼
PN

i¼1Eiðt; xÞqiðt; xÞ
�q

: ð4:4Þ
Proof. Replacing f by fp and fq respectively in the proof of Theorem 4.1 we obtain the desired �u and E. h

Finally, we remark that the multi-valued quantities predicted by the characteristic method are nothing but
those expressed implicitly by the zero level sets of /1 and /2 defined above.
5. Kinetic and quantum descriptions

In the following we discuss a kinetic formulation in field space for Euler–Poisson equations, and its con-
nections with Schrödinger–Poisson equations, as well as Vlasov–Poisson equations in phase space.

5.1. Kinetic equation in field space

Since both U and f solve a linear homogeneous transport equation (3.4), so does g ¼ f dðUÞ. For smooth
initial velocity and electric fields, the density distribution g thus evolves according to
otgþ poxgþ Kqopg� cðxÞpoqg ¼ 0; ð5:1Þ
gð0; x; p; qÞ ¼ q0ðxÞdðp � u0ðxÞÞdðq� E0ðxÞÞ: ð5:2Þ
This is a kinetic type equation in field space with nonnegative measure data. If we formally set
q ¼
Z

gdp dq; quiEj ¼
Z

piqjgdp dq 0 6 iþ j 6 2:
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Multiplying f1; p; qg to (5.1) and integrating over R2
p;q we obtain
otqþ oxðquÞ ¼ 0;

otðquÞ þ oxðqu2Þ � KqE ¼ 0;

otðqEÞ þ oxðquEÞ þ cðxÞqu ¼ 0;
which, for smooth solutions, recovers the expected Euler–Poisson system (1.1), (1.2) and (2.2).
In order to recover (1.3), we let
W ¼ Ex � ðq� cÞ:

By the choice of E0 in (2.7) and (2.8), we have
W ð0; xÞ ¼ Exð0; xÞ � qð0; xÞ þ c ¼ 0: ð5:3Þ
Using (1.1) and (2.2), we find that W solves the following transport equation:
W t þ ðuW Þx ¼ 0: ð5:4Þ

By the uniqueness of the zero solution to (5.4) and (5.3), we conclude
W � 0;
which gives (1.3).
5.2. Wigner transformation

Consider the one-dimensional Schrödinger–Poisson equation of the form
i�otw
� ¼ � �

2

2
o

2
xw

� þ V �w�; x 2 R; t P 0; ð5:5Þ

o
2
xV � ¼ cðxÞ � jw�j2: ð5:6Þ
The electric field is determined by E ¼ �V x. Seeking the WKB-type solution of the form
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qðt; xÞ

p
expðiSðt; xÞ=�Þ;
we obtain, to the leading order, the Euler–Poisson system for ðq; u ¼ SxÞ, i.e., (1.1)–(1.3).
Another path for semiclassical approximation of quantum mechanics is to use the Wigner transformation

from ‘‘physical space’’ into ‘‘phase space’’, which was introduced by Wigner [54] and can be written as
w�ðt; x; pÞ ¼ 1

2p

Z
R

e�ipyw t; xþ �y
2

� �
w t; x� �y

2

� �
dy:
We use the overbar to represent the complex conjugate. Wigner transform has been widely used in the study of
high frequency, homogenization limits of various equations, see e.g. [19,45,23,35,48]. In the current setting, a
direct calculation by applying the Wigner transform to the Schrödinger–Poisson system (5.5), (5.6) shows that
w�ðt; x; pÞ satisfies the so-called Wigner equation
otw� þ poxw� þ h�½V ��w� ¼ 0; ð5:7Þ

where the pseudo-differential operator (local in x and nonlocal in p) is defined as
h�½V ��w� :¼ i

2p

Z Z
V � xþ �y

2

� �
� V � x� �y

2

� �
�

w�ðt; x; nÞe�iðp�nÞydndy:
The macroscopic density qðt; xÞ is usually computed through the zero moment in the kinetic variable p
q�ðt; xÞ ¼
Z

w�ðt; x; pÞdp:
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Formally passing �! 0 in the quantum Wigner Eq. (5.7) one obtains the Vlasov–Poisson system
otwþ poxwþ KEopw ¼ 0; K ¼ 1; ð5:8Þ

Ex ¼
Z

Rp

wðt; x; pÞdp � cðxÞ: ð5:9Þ
For the WKB type initial data
w0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
q0ðxÞ

p
expðiS0ðxÞ=�Þ;
the limit of the corresponding Wigner function becomes
w0ðx; pÞ ¼ q0ðxÞdðp � u0ðxÞÞ:

The classical limit from the Schrödinger–Poisson to the Vlasov–Poisson equations in one-dimensional case has
been justified by Zhang et al. [56] for bounded integrable data. This V–P system is also a model for collision-
less plasma of ions and corresponding electrons. The transport is uni-directional so that the problem can be
formulated in one-space dimension. Here the particle motion is governed solely by induced electrostatic forces,
while electromagnetic interactions are neglected.

In contrast the classical moment closure approach offers
�q ¼
Z

wdp; qu ¼
Z

pwdp:
In an interesting earlier work [39], the authors propose a moment closure approach based on the Vlasov–Pois-
son equation (5.8). From our study in [38] and in this work, we see that the electric field E generally becomes
multi-valued simultaneously with velocity field except in the case with null background. Thus solving problem
(5.1), (5.2) in field space serves as an appropriate kinetic formulation to interpret multi-valuedness
encountered.

5.3. From field space to phase space

We may also formally derive the Vlasov–Poisson equation from (5.1), (5.2). Assume the closure assumption
as g ¼ wðt; x; pÞdðq� Eðt; xÞÞ we set
wðt; x; pÞ ¼
Z

gdq; Eiwðt; x; pÞ ¼
Z

qigdq; i ¼ 1; 2:
Integration of the g-equation (5.1) against f1; qg leads to
otwþ poxwþ KEopw ¼ 0;

otðEwÞ þ poxðEwÞ þ KopðE2wÞ þ cðxÞpw ¼ 0:
The combination of the two gives
otE þ poxE þ cðxÞp ¼ 0;
this coincides with (2.2) when projection onto the physical space is via p ¼ uðt; xÞ.
6. Numerical procedures and implementation

In this section we discuss the numerical procedures of the new field-space-based level set method.
High dimension level set method was studied in [2] for motion of curves.
The main task encountered in this work is to evaluate the density �q accurately. Based on the level set for-

mulation, for evaluation of the density
�qðt; xÞ ¼
Z

Rq

Z
Rp

f ðt; x; p; qÞdð/1Þdð/2Þdp dq; ð6:1Þ
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we need to first compute two level set functions /1, /2 and the function f, all solve the field transport Eq. (2.4)
of the compact form
Ut þ V
!ðX Þ � rX U ¼ 0; t 2 Rþ; X 2 R3; ð6:2Þ
where X ¼ ðx; p; qÞ and
V
!¼ ðV 1; V 2; V 3Þ ¼ ðp;Kq;�cðxÞpÞ:
The initial data are chosen to embed the given initial data of the Euler–Poisson equation. One simple choice is
Ujt¼0 ¼ ðp � u0ðxÞ; q� E0ðxÞ; q0ðxÞÞ
>

for smooth u0, E0. Following [38], we discretize the gradient rX U by a first-order upwind approximation or a
higher order ENO approximation [47], and then discretize time by a forward Euler method or a higher order
Runge–Kutta method. Let ftn; xi; pj; qkg be uniform grids in the tX�plane with mesh sizes Dt, Dx, Dp and Dq,
respectively. The simplest first-order upwind scheme can be formulated as
Unþ1
ði;j;kÞ � Un

ði;j;kÞ

Dt
þ V 1ði; j; kÞU	x þ V 2ði; j; kÞU	p þ V 3ði; j; kÞU	q ¼ 0; ð6:3Þ
where Un
ði;j;kÞ � Uðtn; xi; pj; qkÞ, V mði; j; kÞ :¼ V mðxi; pj; qkÞ ðm ¼ 1; 2; 3Þ and
Uþx ¼
Un
ðiþ1;j;kÞ � Un

ði;j;kÞ

Dx
; U�x ¼

Un
ði;j;kÞ � Un

ði�1;j;kÞ

Dx
;

similar notations are adopted for Uþp , U�p , Uþq and U�q . For m ¼ 1; 2 or 3, if V mði; j; kÞ > 0, we use U�; other-
wise, Uþ is applied. Under the CFL condition
Dt max
jV 1 j
Dx
þ jV 2 j

Dp
þ jV 3 j

Dq

� �
6 1; ð6:4Þ
this scheme is stable in both L1 and L1 norm, which, to be stated below, were shown in [38] for more
general V.

� [Discrete Maximum Principle] Assume that V mðx; p; qÞ ðm ¼ 1; 2; 3Þ are bounded functions in the computa-
tional domain. Let Un be a numerical solution produced by the first-order upwind scheme subject to the
initial data U0, then
kUnk1 6 kU0k1: ð6:5Þ

� [L1 Stability] Assume that V mðx; p; qÞ ðm ¼ 1; 2; 3Þ are bounded and Lipschitz continuous in its ith argument

in the computational domain. Let Un be a numerical solution produced by the first-order upwind scheme
subject to the initial data U0, then for finite time T, there exists a constant M, such that
kUnk1 6 eMTkU0k1; ð6:6Þ

where kUnk1 :¼

P
i;j;kjUn

ði;j;kÞjDxDpDq.

In our numerical simulation, this first-order upwind scheme is mostly adopted for computing U ¼
ð/1;/2; f Þ

>, with which we discuss the evaluation of density via (6.1).
Since the integration (6.1) involves the Dirac d-function in its integrand, as usual we first regularize the

Dirac d-function by a smooth bounded function d� in such a way that d� * d as �! 0þ. The error introduced
in this regularization step depends on the choice of the approximation, whose accuracy is indicated by a so-
called moment condition [3] of the regularization. d� is said to satisfy rth order of moment condition ifR

R
d�ðxÞ ¼ 1 and

R
R

d�ðxÞxk ¼ 0 for 1 6 k 6 r. It is known that the higher the order of moment condition,
the smaller the regularization error. The choice of regularization d� could be any smooth function with the
above properties. However, considering the concentration of the Delta function, it suffices to choose d� to have
a compact support:



H. Liu, Z. Wang / Journal of Computational Physics 225 (2007) 591–614 603
d�ðxÞ ¼
1
�
Wðx

�
Þ; jxj 6 �;

0; jxj > �:

	

One of well accepted choices of this type of d� is the cosine kernel, WðgÞ ¼ 1
2
ð1þ cosðpgÞÞ, i.e.,
dcos
� ðxÞ ¼

1

2�
1þ cos

px
�

� �� �
I ½��;��; ð6:7Þ
which has first-order moment condition. Here I ½��;�� is the standard indicator function.
Replacing dð/1Þdð/2Þ by d�ð/1Þd�ð/2Þ, we thus have the first approximation of �q,
�q�ðt; xÞ ¼
Z

Rq

Z
Rp

f ðt; x; p; qÞd�ð/1Þd�ð/2Þdp dq; ð6:8Þ
to which standard quadrature rules can be applied. In our simulation, the rectangle rule is chosen and the
numerical density is further evaluated by
�q�hðt; xÞ ¼
X

fj/iðt;x;pj;qkÞj6�;i¼1;2g
f ðt; x; pj; qkÞdcos

� ð/1Þdcos
� ð/2ÞDpDq: ð6:9Þ
In this two-step procedure, total error is bounded by the sum of regularization error j�q� �q�j and quadrature
error j�q� � �q�hj. For example, if the cosine kernel and the rectangle rule are used, j�q� �q�j is of order � and
j�q� � �q�hj is of order h=�, where h ¼ maxfDx;Dp;Dqg. Using the similar analysis as in [44], it is clear that
the total error is minimized as of order

ffiffiffi
h
p

when an optimal �
 is chosen to be of order
ffiffiffi
h
p

. Thus the conver-
gence rate of the numerical integration is at least of order 1/2, i.e.,
j�q� �q�hj 6 Ch
1
2

for some constant C. For details on convergence rates in general cases, see [50, Theorem 3].
Though, theoretically, �
 is optimal, it is impractical to determine it exactly. Thus, we choose to run numer-

ical experiments with a wide range of � to circumvent this numerical difficulty. In our simulation the support of
d� is tested with � ¼ h; 2h; 3h; . . . Based on many experiments on �, we found that the smaller �, the sharper of
density at the cost of oscillation. So we have to pick proper � to balance the resolution and smoothness.
Through our simulation, we also found that usually we get best results when � is within [1.5h, 4.5h] depending
on examples being tested. In short, the choice of � plays a crucial role in the evaluation of density. An inter-
esting phenomenon is that the choice of � as mh while using the signed distance function in multi-dimensional
setting may lead to Oð1Þ error [51]. However, in our case, a product of d-functions is being approximated.
Thus convergence is guaranteed with �
 2 ½h;mh� for some constant m. We also notice that the geometry of
the level set function also affects the choice of �, as observed in [27,28]. And we refer to [15] for more regular-
ization techniques related to level set methods.

Here we remark that one could also compute the density �q by solving the field transport equation (5.1):
otgþ poxgþ Kqopg� cðxÞpoqg ¼ 0;
but subject to initial data involving delta functions,
gð0; x; p; qÞ ¼ q0ðxÞdðp � u0ðxÞÞdðq� E0ðxÞÞ: ð6:10Þ
The density is then evaluated by
�q ¼
Z

gdp dq: ð6:11Þ
Here, �q is still evaluated by a post-processing step, i.e. integration over field configuration, but with no
involvement of the Dirac d-function. However, in order to utilize (6.11), one needs to regularize the d-function
in the initial condition (6.10), and such an initial regularization error will surely evolve and accumulate, reduc-
ing accuracy of the final integration. Therefore, the evaluation of �q by post-processing in (6.9) is preferred to
solving the kinetic equation with (6.10) directly.
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We now discuss several technical details to be involved in our numerical tests.
Firstly, we need to specify an appropriate computational domain.
The guiding principle is that the extreme values of u and E should be covered in the computation domain.

Thus, if the example has an exact solution, we choose to prescribe a domain containing the range of the exact
solution for all t before the desired time T. In the case of no exact solution available, based on the initial con-
dition, we first choose a relatively large domain with coarse meshes to get a rough solution in order to deter-
mine the computation domain. Then we can refine our mesh to get better resolution.

Secondly, the computational boundary condition should be enforced in such a way that no artificial and
spurious waves are propagated into the computational domain. In our simulation, if the initial data are peri-
odic in an argument, we use a periodic boundary data in the direction of that argument. For other cases, we
use a Neumann boundary condition.

Finally, we show how to realize multi-valued u and E. The projection of common zeros onto xp and xq
spaces gives the visualization of multi-valued uðT ; xÞ and EðT ; xÞ:
ðu;EÞðT ; xÞ 2 fðp; qÞj/1ðT ; x; p; qÞ ¼ 0g \ fðp; qÞj/1ðT ; x; p; qÞ ¼ 0g; 8x 2 R:
Numerically, we interpolate only grid points satisfying
fðxi; pj; qkÞ 2 Xj j/1ðT ; xi; pj; qkÞj < ~�; j/2ðT ; xi; pj; qkÞj < ~�g;
where ~� is chosen in such a way that a unique grid point can be identified along the zero level set. Computa-
tionally, a ~� which is much smaller than h works well. We point out that a larger ~� may be necessary for the
case when level set functions are rough. Meanwhile the density �q is approximated by (6.9) using /1 and /2.

Using the multi-valued density predicted by the characteristic method and the superposition principle (4.1),
we construct an exact averaged density
�qea ¼
XN

i¼1

qiðt; xÞ: ð6:12Þ
Based on this, we show the numerical accuracy and convergence for averaged density obtained by our level set
method (6.9).

Numerical convergence test with L2 error of (6.9) and (6.12) is performed.

6.1. Exact solution and breakdown time

We now recall some solution formulas given in [11] by using the characteristic system
dx
dt
¼ u; ð6:13Þ

du
dt
¼ KE; ð6:14Þ

dE
dt
¼ �cðxÞu ð6:15Þ
of (1.1)–(1.3) subject to the initial condition
xð0Þ ¼ a; uð0Þ ¼ u0ðaÞ; Eð0Þ ¼ E0ðaÞ:
1. Zero background charge cðxÞ � 0.
Integration of the characteristic system (6.13)–(6.15) leads to
xðt; aÞ ¼ aþ u0t þ KE0t2=2; ð6:16Þ
uðt; xðt; aÞÞ ¼ u0 þ KE0t; ð6:17Þ
Eðt; xðt; aÞÞ ¼ E0: ð6:18Þ
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The density is conserved along characteristics, see (1.11). As shown in [11], the necessary and sufficient con-
dition for the break down of smooth solution is Cðt; aÞ ¼ 0 for some time t and initial position a. This con-
dition also gives the exact time when breakdown occurs, which in current setting gives
T 
 ¼ min
a

t :
�u00 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u020 � 2Kq0

p
Kq0

; u00 < �
ffiffiffiffiffiffiffiffiffiffiffi
2Kq0

p( )
; ð6:19Þ
where fa : u00 < �
ffiffiffiffiffiffiffiffiffiffiffi
2Kq0

p
g denotes the set of initial points which will lead to finite time breakdown.

2. Constant background charge c > 0.
By the characteristic Eqs. (6.14) and (6.15), we have
u00 þ cKu ¼ 0:
If the force is repulsive, K > 0, solutions are
xðt; aÞ ¼ aþ u0 sin
ffiffiffiffiffiffi
cK
p

t
� �

þ E0 cos
ffiffiffiffiffiffi
cK
p

t
� �

� E0; ð6:20Þ

uðt; xðt; aÞÞ ¼ u0 cos
ffiffiffiffiffiffi
cK
p

t
� �

þ E0 sin
ffiffiffiffiffiffi
cK
p

t
� �

; ð6:21Þ

Eðt; xðt; aÞÞ ¼ E0 cos
ffiffiffiffiffiffi
cK
p

t
� �

� u0 sin
ffiffiffiffiffiffi
cK
p

t
� �

; ð6:22Þ
where the density is still given by qðt; xðt; aÞÞ ¼ q0ðaÞ
Cðt;aÞ, but with
Cðt; aÞ ¼ 1þ u00 sin
ffiffiffiffiffiffi
cK
p

t
� �

þ E00 cos
ffiffiffiffiffiffi
cK
p

t
� �

� E00: ð6:23Þ
Finite time breakdown is unavoidable if
ju00ðaÞjP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð2q0 � cÞ

p

for some a 2 R. Under this condition, the first breakdown time is
T 
 ¼ min
a

t;Cðt; aÞ ¼ 0; ju00ðaÞjP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð2q0 � cÞ

pn o
:

If the force is attractive, i.e. K < 0, then
xðt; aÞ ¼ aþ C1

�k
ðe�kt � 1Þ þ C2

k
ðekt � 1Þ; ð6:24Þ

uðt; xðt; aÞÞ ¼ C1e�kt þ C2ekt; ð6:25Þ

Eðt; xðt; aÞÞ ¼ �C1k
K

e�kt þ C2k
K

ekt; ð6:26Þ

qðt; xðt; aÞÞ ¼ q0ðaÞ
Cðt; aÞ ; ð6:27Þ
where k ¼
ffiffiffiffiffiffiffiffiffiffi
�cK
p

; C1 ¼ ku0�E0K
2k ; C2 ¼ ku0þE�0K

2k and
Cðt; aÞ ¼ 1þ C01
�k
ðe�kt � 1Þ þ C02

k
ðekt � 1Þ:
In this case, the necessary and sufficient condition for smooth solutions to experience finite time breakdown is� �

u00ðaÞ 6 � 1� q0ðaÞ

c

ffiffiffiffiffiffiffiffiffiffi
�Kc
p

for some a 2 R. Under this condition, T* can be found by solving Cðt; aÞ ¼ 0.

These parameterized solution formulas give multi-valued solutions of u, E and q after interaction of char-
acteristic curves, i.e. t > T 
. Thus, we can compare our numerical solution with exact solutions to verify the
accuracy of our method.
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7. Numerical examples

In this section, we demonstrate the accuracy and capacity of our level set method by testing several numer-
ical examples and compare the numerical solution with the parameterized exact solution when available. In
the following experiments, the first-order upwind scheme is employed.

7.1. Numerical test one: 5 branches

Our first example is the model with zero background with c ¼ 0, K ¼ 0:01. The initial condition is given by
uð0; xÞ ¼ sin3ðxÞ;

qð0; xÞ ¼ 1

p
e�ðx�pÞ2 :
In this case, since c is zero, the initial electric field E0ðxÞ is determined from q0ðxÞ by
E0ðxÞ :¼ Eð0; xÞ ¼ 1

2

Z x

�1
q0 dx�

Z �1

x
q0 dx

� �
:
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Fig. 1. Multi-valued solution for 1D Euler–Poisson equation at time about 3.
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In this example, (1.11) gives
Table
L2 erro

{dx,dp

{0.06,0

{0.05,0

{0.02,0
Cðt; aÞ ¼ 1þ 3 sin2ðaÞ cosðaÞt þ 1

2p
Kt2e�ða�tÞ2 :
A calculation based on (6.19) shows that T 
 < 3. So we compare our numerical results with exact solution at
time t after 3. Our computation domain is X ¼ ½0; 2p� � ½�1:2; 1:2� � ½�0:5; 0:5�, which is chosen to include the
range of u;E; q at t � 3. The discretization parameters Dx; Dp; Dq are chosen to be 0.02, 0.01, 0.01 respec-
tively, with ~� ¼ 0:0025, � ¼ 1:5Dx and CFL number 0.8.

In Fig. 1 and other following figures, unless specified otherwise, solid line is exact solution while dots are
our numerical results. We see that results from our level set method match the exact solution, though only a
first-order upwind scheme has been used.

Now, we perform the numerical convergence test for the averaged density. �q�h is calculated with � ¼ mh via
(6.9) for m ¼ 1; 2; 3; 4. Then the numerical L2 error between �q�h and �qea obtained in (6.12) is computed as
Z

ð�qea � �q�hÞ2 dx �
X
fxig

�qeaðt; xiÞ � �q�hðt; xiÞð Þ2Dx:
In Table 1, one sees that the L2 error becomes small as the step size decreases for some selected �. This is also
visually shown in Fig. 2. Thus the numerical convergence is obtained, which shows the validity of our level set
approach in computing averaged density.

7.2. Numerical test two: 7 branches

We now test the model with zero background with c ¼ 0, K ¼ 0:01, but subject to initial condition,
uð0; xÞ ¼ sinð2xÞ cosðxÞ;

qð0; xÞ ¼ 1

p
e�ðx�pÞ2 :
Though this example is similar to the first one, the solution has richer structures. Note that from the numerical
convergence test in example 1, we are assured that the level set approach developed here will give correct mul-
ti-valued u, E and averaged �q. Thus from this example on, we choose not to do the numerical convergence test.
Instead, we will just show the averaged density obtained from the level set method, and exact multi-valued
density predicated by the characteristic method.

As in the first example, the initial condition E0ðxÞ is given by
E0ðxÞ ¼
1

2

Z x

�1
q0 dx�

Z �1

x
q0 dx

� �
:

1
r for averaged density at various spatial step sizes and support � ¼ mh

,dq, t} m L2 error

.03,0.03,3.0149} 1 0.1018
2 0.1345
3 0.1464
4 0.1693

.02,0.02,3.0021} 1 0.0513
2 0.0714
3 0.0790
4 0.0901

.01,0.01,3.0017} 1 0.0412
2 0.0626
3 0.0776
4 0.0895



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2. Comparison of averaged q�h (dash and circle) and qea (solid) at various spatial step size and time about 3. Spatial step size decreases
from top to bottom as in Table 1.
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Then the exact solution can be found using (6.16) and (1.11).
Using the same formula (6.19) as in the previous example in determining the critical time T*, we find that

multi-valued solution will appear before t ¼ 4. Our computation domain is X ¼ ½0; 2p� � ½�1; 1� � ½�0:5; 0:5�,
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which is chosen to include the range of u; E; q at desired time. The discretization parameters Dx; Dp; Dq are
chosen to be 0:02; 0:01; 0:01 respectively, with ~� ¼ 0:0025, � ¼ 4:5Dx and CFL number 0.8.

In Fig. 3, once again, by comparing with the exact solution, we see that results from our level set method
match the exact solution. In this example, when we used smaller �, some oscillations for x 2 ½2; 4� are observed.
Thus, we pick relatively bigger � ¼ 4:5Dx to smear the observed oscillation.

7.3. Numerical test three: Negative K

In the previous two examples, multi-valuedness is induced by the decreasing initial velocity in finite time.
However, if the force is attractive, K < 0, even for constant initial velocity, breakdown still occurs at finite
time. This can be seen from the following example. If we consider zero background case, i.e. c ¼ 0, the solu-
tion for x and C are given by
xðt; aÞ ¼ aþ u0ðaÞt þ E0ðaÞKt2=2;

Cðt; aÞ ¼ 1þ u00ðaÞt þ q0Kt2=2:
Thus even if u0ðaÞ is nondecreasing, as long as K is negative, there will be some time t such that C ¼ 0 provided
that q0 P 0. This tells us that multi-valued solutions must appear in the case of K < 0.

Now we test our method with c ¼ 0 and K ¼ �1, subject to initial condition,
uð0; xÞ ¼ 0:01;

qð0; xÞ ¼ 1

p
e�ðx�pÞ2 :
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Fig. 3. Multi-valued solution for 1D Euler–Poisson equation at t ¼ 4:0079.
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In this case, C ¼ 1� 1
2p eða�pÞ2 t2, which starts to become zero at a ¼ p, t ¼ T 
 ¼

ffiffiffiffiffiffi
2p
p

. Thus when t >
ffiffiffiffiffiffi
2p
p

, mul-
ti-valued solutions need to be considered. In order to see more structures, we will test our algorithm at time t

around 4. Our computation domain is X ¼ ½0; 2p� � ½�1:5; 1:5� � ½�0:5; 0:5�, which is chosen to include the
range of u; E; q at desired time. The discretization parameters Dx; Dp; Dq are chosen to be 0.02, 0.01,
0.01 respectively, with ~� ¼ 0:002, � ¼ 1:5Dx and CFL number 0.8. In Fig. 4, we see that though the structure
of the solution is not so rich as in previous one, this example does validate the physical situation that attractive
force always induces multi-valued solutions in finite time.

7.4. Numerical test four: nonzero background

We now test an example with nonzero background with c ¼ 1, K ¼ 1 and initial condition,
uð0; xÞ ¼ 2 sin4 x;

qð0; xÞ ¼ 1:
In this case, as in (6.20)–(6.23) the exact solution can be found explicitly. Here the choice of constant initial
density is to simplify the identification of when multi-valuedness happens. Since Cðt; aÞ ¼ 1þ 4 sin a sin 2a sin t,
T 
 ¼ min
a

sin�1 � 1

4 sin 2a sin2 a

	 

� 0:5:
We visualize our numerical simulation at t ¼ 1. Our computation domain is X ¼ ½0; 2p�� ½�2:5; 2:5� �
½�2:5; 2:5�, which is chosen to include the range of u; E; q at desired time. The discretization parameters
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Fig. 4. Multi-valued solution for 1D Euler–Poisson equation at time around 4.
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Dx; Dp; Dq are chosen to be 0.02, 0.02, 0.02 respectively, with ~� ¼ 0:01, � ¼ 2:5Dx and CFL number 0.8. In
Fig. 5, we see the results in two periods. Looking at the graph for q at x near 2p, one may wonder why the
peak is not complete. This is caused by the fact that the wave is shifting to right while our computation domain
is fixed in ½0; 4p�.

7.5. Numerical test five: discontinuous background cðxÞ

In previous examples, all parameters and initial conditions are smooth. Thus the exact solution can be
expressed in terms of the initial position parameter a. By comparing with exact solution within the same
graph, we have verified the accuracy of our method.

We now present an example with piecewise smooth background charge.
Consider the model with discontinuous background with c ¼ 1

2
I ½�1;1�, K ¼ 0:01, with initial condition,
uð0; xÞ ¼ 4 sinðxÞ;

qð0; xÞ ¼ 1

2
ffiffiffi
p
p e� xþp

2ð Þ
2

þ e� x�p
2ð Þ

2� �
;

where I ½�1;1� is the usual indicator function in ½�1; 1�.
Our computation domain is X ¼ ½�2p; 2p� � ½�5; 5� � ½�1; 1�, which is chosen to be large in order to

include the range of u;E; q at t � 1. The discretization parameters Dx;Dp;Dq are chosen to be
0:04; 0:02; 0:02 respectively, with ~� ¼ 0:009, � ¼ 3Dx and CFL number 0.8.

In Fig. 6, multi-valued u and E are shown along with averaged density with peaks.
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Fig. 5. Multi-valued solution for 1D Euler–Poisson equation at time around 1.
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Fig. 6. Multi-valued solution for 1D Euler–Poisson equation at time around 1.
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8. Conclusion

Together with [38] we have developed a field-space-based level set method for computing multi-valued solu-
tions to 1D Euler–Poisson equations.

In field space multi-valued velocity and electric fields are naturally incorporated into the configuration, and
represented implicitly by common zeros of two level set functions. Using those level set functions as building
blocks, we further develop an implicit projection method to evaluate the multi-valued density as well as aver-
aged velocity and electric fields. The main advantage of the proposed approach over phase-space-based
method is its ability to unfold singularities in both velocity and electric fields. Moreover, the use of level
set formulation enables us to easily treat any number of multi-valued branches, and the topology of multi-val-
ued solutions is handled automatically.

Furthermore, we prove that the averaged density is simply a superposition of all multi-valued densities
predicated by the characteristic method. Averaged field quantities are weighted superposition of correspond-
ing multi-valued ones. This is remarkable since the underlying Euler–Poisson system is nonlinear!

The application of our method is not restricted to the computation of the semiclassical approximation of
Schrödinger–Poisson equations. Similar problems arise in plasma oscillations, beam propagation, to which the
techniques discussed in this paper is expected to be useful.
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